
www.keyfeatureslab.com

Today’s agenda:
✓ Introduction to Kubernetes

✓ CoreDNS

✓ Identities in Kubernetes

✓ Kubernetes Security Posture

Assessment

✓ Q&A

Container Architecture

Container

✓ Containers are lightweight, portable, and
self-sufficient software packages that
contain everything needed to run an
application, including code, runtime,
system tools, libraries, and dependencies.

✓ Each container instance, has a limited
allocated set of resources that it cannot
exceed: CPU, memory, disk I/O, network,
…)

✓ Docker leverages Linux’s namespaces to
isolate containers from the host as well as
from one another. Containers cannot see
other containers’ files, processes, and
network information, unless the user gives
them permission to do so.

VMs vs. Containers
Architecture:

✓ VMs virtualize
hardware using a
hypervisor,
allowing multiple
OS instances to
run independently
on a host
machine.

✓ Containers
virtualize at the
operating system
level, sharing the
host OS kernel
but isolating
applications in
separate user
spaces.

Resource
Consumption:

✓ VMs are heavier
because each
runs its own full
operating system,
consuming more
CPU, memory,
and storage.

✓ Containers are
lightweight, using
shared system
resources more
efficiently and
reducing
overhead.

Isolation:

✓ VMs provide
strong isolation
by running
entirely separate
OS instances,
including their
own kernels.

✓ Containers isolate
at the process
level, sharing the
host kernel while
keeping file
systems,
networks, and
processes
separate.

Boot Time:

✓ VMs have slower
boot times due to
the need to start
a full OS.

✓ Containers start
almost instantly
since they use the
already-running
host OS, making
them ideal for
rapid scaling and
microservices.

Deployment:

✓ VMs are deployed
as independent
units with their
own OS, which
adds complexity
and maintenance
overhead.

✓ Containers are
deployed from
lightweight
images, enabling
fast, consistent,
and scalable
deployments
across different
environments.

Docker & Kubernetes

Docker is an open-source project based on
Linux containers. It uses Linux kernel features
like namespaces and control groups to
create containers on top of an operating
system.

▪ Docker image containers can run natively on
both Linux and Windows.

▪ Docker is also the name of the company that
collaborates with major cloud providers such
as Amazon, Google, and Microsoft to
advance and promote containerization
solutions.

Kubernetes is an open-source container
management system developed by Google.

▪ It helps developers automate the
deployment, scaling, and management of
containerized workloads.

▪ It is based on a master-slave model where a
master node controls all the containers
running on the other nodes.

API Server: the central brain of the control plane. Whether
you create, read, update, or delete resources like pods,
services or deployments, we’ll have to do so through the
API Server. It is also responsible for client and user
authentication.
Scheduler: when a new deployment is received and it
requests to create a new pod, the API Server contacts the
scheduler then evaluates all available nodes and picks
the best one for that pod.
Controller Manager: it monitors all the controllers and is
responsible for collecting and sending information
through and by the API Server. Moreover, it takes
automated actions to maintain the desired state of the
cluster.
etcd: a distributed key-value store used by Kubernetes to
store desired state of the cluster.

Master Node

Worker Node
Kubelet: An agent on each worker node that
communicates with the control plane. It receives pod
specs from the API server, starts the containers, and
ensures they stay healthy. If a pod fails, the Kubelet tries
to restart it on the same node.
Kube-proxy: handles network traffic within the cluster. It
enables communication between services and pods and
distributes incoming requests to the appropriate pods on
the same or different nodes.
Pods: a group of containers that are deployed together on
the same host.
Docker: the execution environment of the containers.
Container Runtime: the software on each worker node that
pulls container images, starts and stops containers, and
manages their execution. Common runtimes include
containerd, CRI-O, and formerly Docker (deprecated
now).

Services
▪ In Kubernetes a Service is a method for exposing a network application that is running as one or more

Pods in your cluster. Expose an application running in your cluster behind a single outward-facing
endpoint, even when the workload is split across multiple backends.

▪ Each Services is assigned a ClusterIP (virtual IP address) that is not tied to any physical network
interface.

Users, Roles & Least

Privilege
▪ Just like in any other secure environment, also in Kubernetes

it is crucial to applying the principle of least privilege when
assigning permissions. To do this we leverage RBAC (Role-
Based Access Control).

▪ Yet, Kubernetes does not manage users natively: users are
created externally via user lists or client certificates. Access is
enforced by binding roles to certificates.

▪ To prevent pods from having excessive permissions, each
cluster hosts an Admission Controller. This controller runs in
the API Server and blocks pods with excessive permissions
before their even admitted in the cluster.

Intra-Pod Communication
▪ If services/applications can be allocated in any pod in the cluster, how does a pod know how to route

internal communication? Here’s a step-by-step simulation:

1. The client pod initiates communication by sending a request to a Kubernetes Service using its
name, which is then resolved by CoreDNS running as a Deployment within the cluster.

2. CoreDNS responds with the Service’s ClusterIP, a stable virtual IP that does not belong to any
specific pod or node but is managed internally by Kubernetes.

3. The client pod sends traffic to the received ClusterIP, which is intercepted and handled by kube-
proxy on the same node rather than being directly routed to a specific pod.

4. Kube-proxy performs round-robin load balancing by selecting one of the backend pods
associated with the Service and forwarding the request, regardless of whether the destination pod
is on the same node or a different one.

End-to-End Container Security with Microsoft
Defender for Containers

Code
Supply chain

attacks

Build
Poisoning the

CI/CD pipeline

Ship
Artifact

tampering
Deployment

Misconfiguration

Runtime
Vulnerable/exposed

application

Injecting malicious
code into container

images and
dependencies

Embedding malware
in automated

workflows

Modifying or replacing
images in public/third-

party registries
Configuring insecure

settings and
permissions, leaving

environments exposed Enabling attackers
to break out of the

container boundaries

CSSC Security

Binary drift
detection Kubernetes nodes

protection

Vulnerability
assessment

Container Security Solutions
Feature / Solution Defender for Containers Sysdig Secure Aqua Security Prisma Cloud

Cloud-native integration Excellent (Azure-native) Good (multi-cloud) Good Excellent (all clouds)

Runtime threat detection (eBPF/Falco) Yes (eBPF-based sensor) Yes (eBPF + Falco engine) Yes (proprietary engine) Yes

Kubernetes audit log monitoring Yes With Secure for Cloud Yes Yes

Image scanning (CI/CD & registries) Native with ACR & DevOps Broad registry support Advanced scanner Full coverage

Policy enforcement (RBAC, PSP,
runtime)

 Azure Policy integration Advanced runtime policies Granular runtime controls Comprehensive (CSPM + CWPP)

SIEM & analytics integration Native with Microsoft Sentinel Syslog/Splunk support Yes Native with Cortex XSOAR

Auto-deployment of agents Automatic via Azure Manual or Helm chart Manual or custom setup Requires setup

Open source base (e.g., Falco) Closed-source Yes (Falco engine) Closed-source Closed-source

Multi-cloud support Azure-first (via Arc for others) Native multi-cloud Native multi-cloud Excellent

License included with CSP tools
Part of the Cloud Workload

Protection Plan (CWP)
 Separate licensing Separate licensing Separate licensing

Microservices architecture
on Azure Kubernetes
Service

	Introduction
	Diapositiva 1
	Diapositiva 2

	Introduction to containers
	Diapositiva 3
	Diapositiva 4

	Introduction Docker + Kubernetes
	Diapositiva 5

	Kubernetes deep-dive
	Diapositiva 6
	Diapositiva 7
	Diapositiva 8
	Diapositiva 9
	Diapositiva 10
	Diapositiva 11

	Defender for Containers
	Diapositiva 12: End-to-End Container Security with Microsoft Defender for Containers
	Diapositiva 13

	Appendix
	Diapositiva 14

